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Abstract. This paper deals with approximate Pareto solutions in convex multiobjective opti-
mization problems. We relate two approximate Pareto efficiency concepts: one is already
classic and the other is due to Helbig. We obtain Fritz John and Kuhn-Tucker type necessary
and sufficient conditions for Helbig’s approximate solutions. An application we deduce saddle-
point theorems corresponding to these solutions for two vector-valued Lagrangian functions.
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1. Introduction

Fritz John and Kuhn-Tucker type rules are basic in optimization because
they describe conditions for solutions in mathematical programs. Different
authors have extended these rules to obtain conditions for approximate
solutions in optimization problems.

In convex scalar optimization, it is possible to obtain multiplier rules for
approximate solutions using the e-subdifferential (Strodiot et al., 1983; Yo-
koyama, 1992). In nonconvex scalar optimization, the general method to
obtain multiplier rules for approximate solutions is based on variational
principles (Loridan, 1982).

Multiobjective optimization problems add an additional detail since in
this kind of programs the notion of approximate efficient solution is not
unique. The concept more used in the bibliography is due to Kutateladze
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(1979) and Loridan (1984). Using this concept Liu (1991, 1996), Yokoyama
(1996), Liu and Yokoyama (1999) and the authors (Gutiérrez et al., sub-
mitted) have obtained Kuhn—Tucker type conditions for approximate Pa-
reto solutions. During these last years, several authors have already
initiated the study of approximate solutions in optimization problems
involving set-valued maps (see, for example, Rong and Wu, 2000).

In this work we provide multiplier rules for approximate solutions in
convex multiobjective optimization problems using the e-subdifferential
and a notion of approximate efficiency due to Helbig (1992). With these
rules we complete the Kuhn-Tucker type conditions above-mentioned.

As an application of these multiplier rules we develop saddle-point theo-
rems corresponding to approximate solutions in the sense of Helbig using
two vector-valued Lagrangian functions.

Our saddle-point theorems include approximate saddle-point results for
scalar problems, extend by means of Helbig’s approximate solutions similar
results obtained for exact Pareto solutions in Tanino and Sawaragi (1979),
Corley (1981), and Luc (1984) and give an answer to a problem formulated
in Remark 3.3 of Vdlyi (1987).

Section 2 contains definitions and some results subsequently used. More-
over some connections between the concepts of Kutateladze—Loridan and
Helbig are analyzed. Section 3 describes a general method to transform a
multiobjective optimization problem in a scalar optimization problem in
such a way that approximate Parcto solutions for the first problem are
approximate solutions for the second problem. We next look into convex
multiobjective optimization problems and we deduce multiplier rules for
approximate Pareto solutions in the sense of Helbig. In Section 4 we
deduce saddle-point theorems for approximate Pareto solutions in the sense
of Helbig using the multiplier rules obtained in Section 3. Finally, Section
5 presents some conclusions that summarize this work.

2. Notation and Preliminaries

Let X be a normed space. In this paper we analyze the multiobjective opti-
mization problem

Min{f(x)|x € K}, (1)
where X — R, f= (fi,/2...,/,) and KC X, K+# (. We consider Pareto
solutions for (1).

DEFINITION 2.1. A point xy € K is said to be an efficient Pareto solu-
tion (or Pareto solution) for (1), denoted x¢ € Min(f, K), if there is no
x € K such that f(x) — f(xo) € —R \{0}.
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We write X* for the topological dual of X. The interior of M C X will
be written by int(M). Let 1), denote the indicator function of M. For a lin-
ear map A:X — R™ we use Im(4) and A4’ to denote the image and the
transpose map of A4 respectively. Finally, if g:X — RU {oco} is a convex
function then dom(g) designates its domain.

Definition 2.2 establishes the notion of approximate solution for scalar
programming.

DEFINITION 2.2. In problem (1), assume that p = 1. Let ¢ = 0. A point
Xo € K is said to be an g-solution (or approximate solution up to ¢) for (1),
if f{xo) — e < flx), Vx € K.

The following definitions describe two concepts that extend the notion of
approximate solution from scalar optimization problems to multiobjective
programs.

DEFINITION 2.3 (Kutateladze, 1979; Loridan, 1984). Let & = (¢, &, ...,
¢y) € R.. A point x € K is said to be an é-efficient Pareto solution (or é-
Pareto solution) for (1), denoted x( € Ming(f, K), if there is no x € K such

that f(x) — f(xo) + & € —R"\{0}.

DEFINITION 2.4 (Helbig, 1992). Let / € int(R".) and let ¢ > 0. A point
Xo € K is said to be an (¢, h)-efficient Pareto solution (or (e, h)-Pareto solu-
tion) for (1), denoted xy € Min, (f, K), if

x € K, f(x) — f(xo) € =R = (h,f(x0)) < (h,f(x)) + .

Definition 2.4 was introduced by Helbig (1992) in the context of a linear
topological space Y ordered by a nontrivial cone. Notice that Definitions
2.3 and 2.4 become Definition 2.1 when £§=0 and ¢ =0, respectively.
Moreover, when p = 1 Definition 2.3 and Definition 2.4 with 2 = 1 become
Definition 2.2.

If problem (1) is Max then we define the sets of solutions Max(f, K),
Max;(f, K) and Max,(f, K) in a similar way as Definitions 2.1, 2.3 and 2.4,
respectively.

In convex scalar optimization there exists a concept very useful to obtain
information about approximate solutions: the e-subdifferential.

DEFINITION 2.5 (Hiriart-Urruty, 1982). Let g:X — R U {oco} be a convex
proper function. Let xo € dom(g) and ¢ > 0. The e-subdifferential of g at x
is the set 0,g(x¢) defined by
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0:8(x0) = {x" € X*|{x",x — x¢) < g(x) — g(x0) + ¢ Vx € X}.

We use this concept in Section 3 to deduce multiplier rules for (e, /)-Pa-
reto solutions in convex multiobjective optimization problems.

The ¢-subdifferential satisfies several calculus rules. Next we describe the
formula for a sum of convex functions (see Theorem 2.1 in Hiriart-Urruty,
1982 for more details).

THEOREM 26. Let g1,g2: X — RU{oco} be two proper convex functions
such that there exists x € dom(gy) at which g, is finite and continuous. Then
Ve = 0 and Vxy € dom(g;) N dom(g>),

@ +e)(x0) = |J {0u1(x0) +8uga(x0)}.

61 208 20
&) tep=¢

The following proposition describes the e-subdifferential of an indicator
function and motivates the notion of &-normal set. For more details, we
refer the reader to Hiriart-Urruty, 1982.

PROPOSITION 2.7. Let M be a nonempty closed convex subset of X and let
Xo € M. Then 0.1y(x0) = {x* € X*:(x*, x — x¢) <&, Vx € M}.

DEFINITION 2.8. Let M be a nonempty closed convex subset of X and let
xo € M. The set N,(M,x)) of enormals to M at xy, is defined by
NS(M, Xo) = aSIM(X()).

We finish this section giving some relationships between Definitions 2.3
and 2.4.

PROPOSITION 29. Let ¢>0, g€ R\{0} and heint(R) such that
(h,&) = 1. Approximate solutions for (1) satisfy the following relations:

(i) Min(f; K) C Min, ;(f, K) C Min,;(f, K).
(i1) If € = 0 then Min(f, K) = Min, (f, K) = Min,;(f, K).

Proof. (i) If xo € Min(f, K) the
x € K such that f(x) — f(xo) € —R".
(h,f(x)) + & = (h,f(x0)) + & = (h,f(x0))-

Therefore Min(f; K) C Min, ;(f, K).
Now, let xo € Min,;(f; K) and suppose that xo ¢ Min,;(f, K). Then there
exists x € K such that

n f(K) N (f(xo) — B) = {f(x0)}. Thus, for all
, /{x) = f(x0) and, consequently,
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J(x) = (flxo) — & &) € —RL\{0}. (2)
By (2), f(x) — f(x9) € —R" and
(h,f(x0)) < (h,f(x)) +¢ (3)

since xp € Min,,(f; K). From (2) we have f(x) +¢-&— f(xo) € —R\{0}. As
h € int(R") we obtain (h,f(x) +¢&-&—f(x)) <O0. Since (h,&) > 1 it follows
that (h,f(x)) +¢& < (h,f(x0)), contrary to (3).

(i) A simple verification shows that Min.(f; K) C Min(f; K) if ¢=0.
Then part (i) proves the inclusions in (ii). O

The following simple example shows that the last inclusion in Proposi-
tion 2.9(1) is not an equality in general.

EXAMPLE 2.10. Consider problem (1). Suppose that X = R*, K = {(x,y) €
R*[x>+ 3> <1}, p=2 and f(x,y) = (x,»). Let e=1, = (1,0), h=(1,1)
and xop = (0,0). It is clear that x¢ € Min.z(f,K) since f(xo) —¢e-&=
(—1,0) € Min(f, K). However x, is not an (g h)-Pareto solution since

x = (=1/V2,-1/V2) € K, f(x) — f(x9) € —R? and
(hf(x)) +e=—V2+1< 0= (hf(x)).

3. Multiplier Rules for Approximate Pareto Solutions in Convex
Multiobjective Programs

In this section we assume that the feasible set in problem (1) is K= SN C,
with
S={xeXg(x)<0,j=12,...,m},

g X—R,j=12,....omand CC X, C#0.
Let ¢>0, heint(R)) and xp€ X be fixed We can analyze if
Xo € Min,(f, K) by means of the scalar optimization problem

Min{F(x)|x € C}, (4)
where F(x) = max {fi(x) — fi(xo), gj(x), (h, f(x)) + & — (h,f(x0)) }.

I<i<p
1<j<m

LEMMA 3.1. Problems (1) and (4) satisfy the following relations.

(1) If xo € Min,;(f, SN C) then x¢ € Min,(F, C).
(i) If 0 < 0 < ¢ and x¢ € Mins(F,C) NS then xy € Min,,(f, SN C).

Proof. (i) Suppose that xo € Min,;(f; SN C). As xp € S and ¢ > 0 we have
F(x¢) = &. Moreover,
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F(x) >0, VxeCdC.

Indeed, if there exists z € C such that F(z) < 0 then z € S, because
gi(z) <F(z) <0, Vi=12,....,m,

and f(z) is better than f{x¢) in the sense of Pareto since
fi(2) — fixo) S F(z) <0, Vi=1,2,....p.

Consequently, (h,f(xo)) < (h,f(z)) + ¢ since x¢ € Min,;(f, SN C). This con-
tradicts the fact that (i, f(z)) + & — (h,f(x)) < F(z) < 0.

In summary, xo € C, F(xyp) =¢ and F(x) > 0,Vx € C; therefore x, €
Min,(F, C).

(i) Let 0 € [0,¢) and suppose that xg € Mins(F,C) N S. Then F(x) >
F(xo) — 90, ¥x € C. If we evaluate F(xy) — 0 and we use that ¢ < ¢, then we
obtain

F(xg) —0=¢—0>0
and it follows that Vx € C,
max {f;(x) —fi(x0),8;(x), (h./(x)) +&— (h.f(x0))} = F(x) = F(x0) — 0 > 0.

1<i<p
(5)

I<j<m
If x € S then gj(x) <0, j=1,2...,m. Therefore, if we apply inequality (5)
to any x € SN C we conclude that there exists i € {1,2,...,p} such that
fi(x) > filxo) and  f(x) —flxo) & —RY, or flx)—flxo) € —R, and
(h,f(x)) +¢&> (h,f(x0)). Consequently, xy € Min,,(f, SN C). O

Lemma 3.1 allows to obtain Fritz John type conditions for (¢, /)-Pareto
solutions in general convex multiobjective optimization problems.

In the remainder of this paper we consider the multiobjective optimiza-
tion problem

Min{f(x)|x e SN Q N M}, (6)

where Q = {x € X|Ax—-b =0}, A:X — R is a continuous linear map,
be R and M C X is a nonempty closed convex set. Moreover we require
fioi=1,2,...,p,and g;, j=1,2,...,m, to be convex functions and we sup-
pose that SN QN M # (.

THEOREM 3.2. Consider the optimization problem (6). Assume that
onint(M) # 0 and xo € SNQN M.

(1) If xo € Ming,(f,SNON M) with h= (hy,hy,... ,hp) € int(Rﬁ), then
there exist (n,v,a) € R¥ X R™ x R and multipliers (A, p,7) € R’ x
R™ x R such that
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(m,v,0, 4, 14,7) =0, (7)

p m
IS SRS ®
i=1 =1

m

0.€ > 0y [(Z +7hi)f)(x0) + D By, (1)) (x0) + Im(A') + Nu(M, x0), (9)

i=1 j=1
m

Znﬂrzvj—veﬂc Zu,gf x0).- (10)

(i1) Let €>0 and h € 1nt(Rp) If there exist (n,v,o, A, 1,7) € R x R™x
R x R’ x R" x R satisfying conditions (7)—(10) with strict inequality
in (10), then xy € Min,;,(f,SN QO N M).

Previously we are going to prove a lemma.

LEMMA 33. Consider the optimization problems (4) and (6) under the
hypotheses of Theorem 3.2 and let 6 = 0. Then xy € Ming(F,Q N M) if and
only if there exist (n,v,o) € R’ x R" x R and multipliers (4, u,7) € R’ x
R™ x R such that (7)—~(9) and

Znﬂrzv/ (e—0) —yet+a< > megixo) (11)
j=1

are satisfied.

Proof. It is clear from Definition 2.5 that xy € Mins(F,Q N M) if and only
if 0 € 05(F+ I+ Iu)(xp). As QNint(M) # ) we can apply Theorem 2.6
and we deduce that 0 € 05(F+ Ip + Iy)(xo) if and only if there exist
o =0,i=1,2,3, such that oy + ap + a3 = 0 and

0e€ amF(X()) + Gzle(xo) + GaBIM(xo). (12)

In view of Definition 2.8, (12) becomes 0 € 0, F(xg) + Ny, (Q, x0)+
Ny (M, x0). Therefore, 0 € 05(F+ Ip + Iy)(xo) if and only if there exist
o €R,i=1,2,3, such that

(o1, 000, 03) =0, (13a)

o +oap+o3 =20 (13b)

and
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0E60(1F(x0)+Nocz(Q7x0)+Nz3(Max0)' (130)

According to Theorem 4.1 in Hiriart-Urruty (1982) we deduce that
x* € 0,,F(x¢) if and only if there exist p +m+ 1 nonnegative constants
BisBay---sBps VisV2,eoo v, ¢ and p+m+ 1 nonnegative multipliers
Ay 22y s A B s s By Y With D22 24 37 i 4y = 1, such that

X' eZaﬁ Adfi) (xo +Zav, 1) (x0) + ¢ (yth) Xo) (14)

j=1

and
)4 m m
IS NATITE SR 13
i=1 =1 j=1
Theorem 2.6 implies

65<V§ hJ%) (x0) = U E & (Yhfi) (xo). (16)
l:1 l:
&E=20

él+£2+“-+é/):é
Combining (14) and (15) with (16) we see that x* € 0, F(xy) if and only if

there exist 2p+m nonnegative constants fBy,8,,...,0, &1,8,...,&,,
Vi,V2,...,V, and p+m+1 nonnegative multipliers Ay,/42,...,4,,
Hy B - o s ¥ With D27 2+ 377 4+ = 1, such that
? m p
X €D 0 (24 (o) + D0y (g (o) + Y0, (vhifi) (xo) (17)
i=1 =1 =1
and

)4 m 14 m
DB v+ Gte—) pgilx) —re=a. (18)
i=1 J=1 i=1 =1

If we write n; =f,+¢&;, i=1,2,...,p, then we conclude by Theorem 2.6
that (17) and (18) are equivalent, respectively, to

p m

XT €Y 0y [(2 4 phi)fi)(x0) + > 0y, (1,87 (x0) (19)

i=1 =1

and

p m m
SURD SURRED ST TSRS )
=1 j=1 Jj=1
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Finally (13), (19) and (20) imply that 0 € 05(F + Ip + Iy)(xo) if and only if
there exist o; > 0, i = 1,2, 3, with

o+ oo+ o3 =9, (21)

p + m nonnegative constants #;,1,, . .. Mp> V1, V2505 Vm and p + m+ 1 non-
negative multipliers, A1, A2, ..., Apy Uiy foy- -yt » With D7 A+ Z]"il Wi+
y =1, such that

m

0€ 3 (s ThICx0) + D00, ) () + Nu(@,0) + Nay (M, 30

1

and

m m

p
DY vt e Y wgi(xo) = e = (22)
i=1 =1 Jj=1

Substituting (22) into (21) and using that oy > 0 we obtain (11) with « = o3.
Now, it is well-known that Ny, (Q, xo) = No(Q, x¢) = (Kerd)" = Im(A4’) (see
Sections 5.7 and 6.6 in Luenberger, 1969 for more details) and the necessary
condition is complete.

Conversely, assume that (7)—(9) and (11) are satisfied. We define «; by
equality (22), op =0 — (21 + «) and a3 = . The constants o; and o, are
nonnegative. Indeed, ¢ — y¢ = 0 since y < 1 by (8). From xy € S it follows
that — Z;’il 1gj(xo) =0, so o > 0. Finally, (11) shows that o +a <0,
and the sufficient condition is proved. ]

Proof of Theorem 3.2. (i) By statement (i) of Lemma 3.1, if xy € Min,;(f, SN
QN M) then xy € Min,(F,Q N M). The result of part (i) follows from
Lemma 3.3 with § = ¢. Notice that (11) becomes (10) when ¢ = e.

(i1) Reasoning as the last part of the proof of Lemma 3.3, we have that
o; = 0, where o is defined by (22). So, o; + o = 0. Using that (10) is satis-
fied with strict inequality, it follows that o) + o < &. Choosing ¢ such that
o +a < <e, then (11) is satisfied. The conclusion follows from Lemma
3.3 and statement (ii) of Lemma 3.1. O

REMARK 34. (i) (10) is a complementary slackness condition. Notice that
if ¢ = 0 then p,gj(x0) =0, j=1,2,...,m.

(i1)) By Proposition 2.9, the multiplier rules in Theorem 3.2(i) are Fritz
John type necessary conditions for Pareto solutions in problem (6). In the
same way, the multiplier rules in Theorem 3.2(ii) are Fritz John type suffi-
cient conditions for ¢ - &-Pareto solutions in problem (6) if € € R \{0} and
(hé) > 1.
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If problem (6) satisfies the so-called Slater constraint qualification:
(SCQ) FJze€ M suchthat g(z) <0 and Az =b,
then multipliers 4;,i =1,2,...,p and y cannot all be zero and we obtain
Kuhn—Tucker type conditions. The proof for Proposition 3.5 is similar to
that of Proposition 4.1 in Gutiérrez et al. (submitted) and is omitted. This
proposition and Theorem 3.2 extend Theorem 2.4 in Strodiot et al. (1983)
taking ¢ - /i as error.

PROPOSITION 3.5. Consider problem (6). Let xo € SNQNM. Under the
constraint qualification (SCQ), if xo satisfies conditions (7)—(10) then

(4,7) #0.

Finally we use the multiplier rules attained in Theorem 3.2(ii) to obtain
(e, h)-Pareto solutions in one particular case.

EXAMPLE 3.6. With the notation of problem (6) suppose that X = R?,
p=2, f(x,y) = (X,y), m=2, gl(xay) =-3x-, gZ(Xay) =-—-x—3y and
Q=M=R> Let e=1 and h=(1,1). It is clear that V(x,y) € R
Vix, 42,7, s by € B and Vi, n5,v1,v2 2 0,

O [(Z1 + 2N ) = {(4 + 9,0}, 0y, [(A2 + )2 (x,0) = {(0, 42 + )},

O (111) (%, ) = {m (=3, =D}, 0y, (1282) (x,3) = {ma(=1,-3)}.

Then Theorem 3.2(ii) implies that the following conditions give (1,(1,1))-
Pareto solutions:

(11512, V1, V2, A1y 22, g, pa,7) 20, (23)
Mtlo+u+upm+y=1 (24)
(Ai+7,4+7) =wmB, 1)+ u(1,3), (25)
M+ vi+va—y < (=3x —p) + p(—x = 3y), (26)
—3x—-y<0, —x-3y<0. (27)

If we replace (26) by
M+ +vi v =y < (=3x = y) + po(—x = 3y), (28)

then Theorem 3.2(i) shows that the above conditions are necessary for
(1,(1,1))-Pareto solutions. We can certainly assume that 5, =n, =
vi = v, =0 because if 5,15, vi,v2 =0 we have multipliers A, A2, iy, ty, 7y
and a pOint (X,y) such that (’71a’72aV17V27/117/12,M1>H27%X7J/) SatiSfy (23)7
(27) then (0,0,0,0, A1, A2, 4y, tt, 7, X, y) solve (23)—~(27) too.
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Equations (24) and (25) imply 41 =1—2u —4u,, 2o =1—4u, —2u,
and y = Sy + 5y, — 1. As 4y, 4, and y are nonnegative we have the follow-
ing constraints for the multipliers y; and u,:

=0, =0, 244, <1, 4w +2u <1, Su+5u, =1
(29)

Choosing = (1/4,0), u=(0,1/4) and u=(1/6,1/6) respectively (three
extremal points of the set defined by (29)) we obtain from (26) and (27) that

SN{(x,y) eR*3x+y<1 or x+3y<1l or x+y<l1}

is a set of (1,(1,1))-Pareto solutions. Taking into account condition (28) we
deduce that points in

SN{(x,y) e R*B3x+y<1 or x+3y<1l or x+y<l1}

satisfy necessary conditions for (1,(1,1))-Pareto solutions. It is easy to
check that this is the set of (1,(1,1))-Pareto solutions.

4. Approximate Saddle-Point Theorems

As an application of Theorem 3.2 we deduce approximate saddle-point the-
orems for Helbig’s approximate solutions in convex Pareto problems.

Let k > 1 be an integer and let d € R’ be a fixed vector. We denote by
Ly the linear space of linear functions from R* into B” and by Ly 4 the lin-
ear space of functions {§:R* — RP|s(z) = (s,z)d} (notice that sc R¥
defines §). Let L] = {5€ LS(R") Cc R\} and L =1{5€ Lidls € R: 3.
Both L,;L and L; 4 are convex cones. Moreover it is clear that Ly, C L and
Li,C L. '

According to these spaces we consider two vector-valued Lagrangian
functions for (6): @y 4 : X X Lypg, X Lyg, — R’ U{£oo} defined by the
equality

00 ifx &M
Dy gy (x,51,52) = { f1X) +5(g(x)) + 82(A(x) = b) ifxeMs €Ly,
—00 if xe M,s' ¢ L;.,d,

and ¥ : X x L, x L, — R’ U {£o0} defined similarly.

DEFINITION 4.1. Let ¢ € R'.. A point (xo,5),55) € X X Ly, % L, 4 is said
to be an &-Pareto saddle-point for the Lagrangian function @, 4, if:

(1) Xo € Minﬁ(q)dhdz(’v 501 ’ 502)7 X)’

(11) (‘S?()1 9 5(%) S Man((Dd] > (XO7 %y ')7 Lm,dl X Lr,dz)‘
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In Definition 4.1 we supplement the space R’ with the elements oo and
—oo and we assume that the usual algebraic and ordering properties hold.
The definition of &Pareto saddle-point for the Lagrangian W is similar.

Proposition 4.2 characterizes é-Pareto saddle-points for the Lagrangians
®, 4, and . The proof is analogous to the demonstration of Proposition
3.1 in Vadlyi (1987) and it is omitted.

PROPOSITION 4.2.
(i) Let £€ R and dy,d> € &+ R\{0}. A point (x0,5),55) € XX Lya, X
L, g4, is an & Pareto saddle-point for the Lagrangian @y 4, if and only
(a) xo € Ming((I)d] ’dz(-, .5701 , S~02), X),
b)xoeSNONM,
(© 5 (g(x0)) +& & —R\ {0},

(ii) The same is true for the Lagrangian ¥ in place of @y 4, if
(x0,5¢,53) € X X Ly, x L, and we replace (a) by
(@") xo € Ming(W(-, 57, 53), X).

Next we show that in convex Pareto problems satisfying (SCQ), if ¢ >0
and &h € int(R) with (h,&) > 1 then for every (e, h)-Pareto solution xo
there is a Lagrangian function ®,4 4, such that xo is an ¢ - &-Pareto saddle-
point of this function. We previously state an approximate version of the
Lagrangian multiplier theorem under appropriate regularity conditions.
This result extends Theorem 4.1 in Tanino and Sawaragi (1979), Theorem
2 in Corley (1981) and Theorem 3.2 in Luc (1984).

THEOREM 43. Let ¢,¢ > 0 and &, h, d € int(R") such that (h,&) > 1. Sup-
pose that (SCQ) holds. If xo € Min;(f,SNQONM) then there exist
S¢ € Lz and S§ € Lyg, such that xo € Min,(@eza, (-, 54, 5¢), X) and
5o (g(x0)) +¢e-8€ R

Proof. As xy € Min,;(f,SN QN M) it follows by Theorem 3.2 that there
exists (n,v,o, 4, 1,7) € R’ x R™ x R x R’ x R™ x R such that (7)-(10) hold.

From (9) we deduce that there exist xi €0, [(4+ vh)fi(x0), i=
1,2,...,p,  z; €0y(1g)(x0), j=12,....m, a"€lm(4d’) and w*E€
N, (M, xp) such that

ixf+iz_;f+a*+w*:0. (30)
i=1 =1

As a* € Im(A4") it follows that there exists v = (v, v2,...,v,) such that a* =
A'v. Let us show that xy € Min,,((A 4+ yh, f()) + (u, g(-))+ (v, A(-) — b), M).
Indeed, by the definition of ¢-subdifferential and e-normal we obtain
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(Ai+yhi)fi(x) = (Ai+yh)fi(x0) —n;+ (x},x —Xxp), i=1,2,...,p, Vx€X,

(31)
wgi(x) = wgi(xo) — v+ (z,x = xo0), j=12,....m, VxeX, (32)
a>= (Wx—x), VxeM, (33)
(v,A(x) — b) = (v, A(x0) — b) + (a",x — x¢), VxeX. (34)

Adding the inequalities in (31)—(34) and applying (30) we obtain Vx € M,
(2470, f(x)) + (1, 8(x)) + (v, A(x) = b) = (A4 7h,f(x0)) + (1, &(x0))
+ (v, A(x0) — Zn, Zv,—fx (35)
Applying (10) into (37) it follows that Vx € M,
(4 0h,f(x)) + (1, 8(x)) + (v, A( ) = b) = (A +yh, f(x0))+
(11, g(x0)) + (v, 4(x0) Zu,gj (x0) (36)
(2 +h,f(x0)) + (1, 8(x0)) + <v7 A(x0) — b) — ye,

where the last inequality holds since xo € S and y; >0, Vj =1,2,...,m. By
(36) we see that

xo € Miny((2 +9h, f(-)) + (1, g(+)) + (v, A(-) — b), M). (37)
Let us consider § = (B, )ce€ € Ly ez and §3 = (Bov,)dy € L, 4, with
1 1
"G BT UmRE) o

According to Proposition 3.5 we have (4,7) #0. Then f,,f, > 0 since
¢,e >0 and hz, dp € int(R?). The proof is completed if we show that
X0 € Ming.z(®@eez.a, (-, S, 5¢), X) and §) (g(x0)) +¢- &€ R’

Suppose, contrary to our claim, that xo & Ming.s(Deeza, (-, so,so) X). Then
we could find a point x € X such that

@iz 4, (x7s~017§02) — (Peezar (xo’f()lvfg) —¢-8) € _R{:—\{O}- (39)

X0 € M and §) € L}, .. since f; >0 and p € R}. Then x € M and we can
rewrite (39) as

J(x) + 55 (2(x)) + 55 (A(x) — b) = (f(x0) + 55 (€(x0)) + 55 (A(x0) — b)
—¢-8) € —R\{0}.
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Since 4 + yh € R’, we have
(44 7h, f(x) + 55 (g(x)) + 57 (A(x) = b) = (flxo) + 5, (g(x0))
+52(A(x0) — b) —&-8)) <O,
By (38) we have (A+7vh,53(-)) = (u,-) and (A+yh,s3(-)) = (v,-). Using
that (h,&) > 1 we conclude from (40) that

(A +7vh,f(x)) + (1, 8(x)) + (v, A(x) — b) < (A + 7h,f(x0)) + (1, &(X0))
+ (v, A(x0) — b) —ye — (A, & - &).

(40)

(41)
Inequalities (40) and (41) are strict if y # 0 because / € int(R). More-
over (A,&-& > 0if 4 # 0 since ¢- & € int(R). Then for x € M we have

(A4, f(x)) + (1, 8(x)) + (v, A(x) — b) < (A +7h,f(x0)) + (1, g(x0))
+ (v, A(x) — b) — ye

in contradiction to (36).
Finally, we show that 5] (g(xo)) + ¢ - & € R’.. Indeed, by (38) we have

So(g(x0)) + &&= (B, g(x0))ces + ¢+ & = <% " 1>8 ¢

and 5] (g(x)) +¢-&€ R if and only if (i, g(xo)) + (2 +yh,e-&) > 0. As
(h,€) = 1 and (4,¢- &) > 0 we conclude from (10)

m p m
(1,8(x0)) + (A+7yhe-8) = > peixo)+ye= Y ni+ Y vi+a>0.
=1 =1 =1
]
Next we show that the conditions described in Theorem 4.3 are not suffi-
cient for (e, h)-Pareto efficiency.

EXAMPLE 44. In Example 2.10 the feasible point (0,0) is not an (1,(1,1))-
Pareto solution. However, let ¢ =1, §= (1,1) and §}(z) = (z,z),Vz € R. It
is clear that §} € Ly ;) and $)(g1(0,0)) +¢&-&=(0,0) € RZ. Moreover
(0,0) € Ming 1y (/() + sb(g1(-)), R*). In fact, suppose that there exists
(xvy) € R such that f(xvy)+*s%(gl(x7y)) _(f(()’ 0) +§(1](g1(070))
—(1,1)) € =R2\{0}. Then (x+x?+p*+Ly+x>+ > +1)e —R\{0}
and this is a contradiction since (x+ x>+ )+ 1,y+x*+ »*+1)=
(x4 1/2)* + 32 +3/4, X+ (y + 1/2)° +3/4) € B>,

The following corollary is immediate from Proposition 4.2(i) and Theo-
rem 4.3.
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COROLLARY 4.5. Consider problem (6) and suppose that (SCQ) holds. Let
e>0, ¢>1, shemnt(R)) with (hg)>1 and d, € g+ R\{0}. If
Xo € Min,,(f, SN QN M) then there exist Sy € Ly, e and §§ € Ly 4, such that
(x0,50,53) is an ¢-&Pareto saddle-point for the vector-valued Lagrangian
SJunction @ 4,.

REMARK 4.6. We have chosen the Lagrangian ®, 4 instead of ¥ to
obtain necessary conditions for (¢, /)-Pareto solutions through its &-Pareto
saddle-points because the space L;, has less variables than the space L.
This feature is important from the point of view of solving practical prob-
lems.

Nevertheless the corresponding result for the Lagrangian W also holds
and it is stated in the next corollary. Its proof is clear from Theorem 4.3
and Proposition 4.2(ii) since Ly 4 C L.

COROLLARY 4.7. Consider problem (6) and suppose that (SCQ) holds. Let
¢>0 and &h e int(R7) with (h,&) > 1. If xo € Min.,(/,SNQ N M) then
there exist S} € Ly, and s} € L, such that (xo,5},5¢) is an ¢- &Pareto sad-

dle-point for the vector-valued Lagrangian function V.

For the same reason in Remark 4.6 we should choose ¥ instead of @y, 4
to obtain sufficient conditions for approximate Pareto solutions through its
&-Pareto saddle-points.

PROPOSITION 48. Let h € int(R",), € € R, and (x0,54,53) € X x L, x L,.
Assume that xo is an approximate solution up to (h,&) for the scalar optimi-
zation problem

Min{ (h, ¥ (x, 5}, 57)) i € K},

where the feasible set is K=SNQNMnN{x € X|f(x) — flxo) € —R".}. Then
Xo € Min<h7§_§01(g(x()))>7h(ﬁ SN Q N M)

Proof. Suppose that the conclusion is false. Then there exists a point
x€SNQNM such that f(x)—f(xo) € =R and (h,f(x0)) > (h,f(x))+
(h,& — 54 (g(x0))). Hence x € K, and we have s}(g(x)) € —R. and A(x)—
b =0 since 5§ € L, and x € SN Q. Moreover, A(xg) —b =0 because xo €
0. Then
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Since x,xg € M and s} € L}, (42) shows that
<h7 ‘P(Xo, §Olv ‘5702)> - <h7 E> > <h7 ‘P(X, §(}7 §()2)>

This is a contradiction because xo € Ming, ; ((h, (-, 53, 55)), K). O

The proof of Proposition 4.8 shows that the same result is true for the
Lagrangian function @y, 4, if 53 € L

5. Conclusions

In this work we have studied Helbig’s approximate solutions in convex Pa-
reto problems. Our first objective has been to obtain multiplier rules for
these solutions. In order to attain this objective we have related the multi-
objective problem with a scalar minimax program. This procedure has
proved to be very useful for our propose.

Next we have deduced the corresponding approximate saddle-point theo-
rems using two different vector-valued Lagrangian functions. Here our
development closely follows the line of classical Lagrangian saddle-point
results starting from the Kuhn—Tucker conditions previously obtained. Our
Corollary 4.7 gives an answer to a problem formulated by Valyi (1987) in
Remark 3.3.
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