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Abstract. This paper deals with approximate Pareto solutions in convex multiobjective opti-

mization problems. We relate two approximate Pareto efficiency concepts: one is already
classic and the other is due to Helbig. We obtain Fritz John and Kuhn–Tucker type necessary
and sufficient conditions for Helbig’s approximate solutions. An application we deduce saddle-
point theorems corresponding to these solutions for two vector-valued Lagrangian functions.
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1. Introduction

Fritz John and Kuhn–Tucker type rules are basic in optimization because
they describe conditions for solutions in mathematical programs. Different
authors have extended these rules to obtain conditions for approximate
solutions in optimization problems.
In convex scalar optimization, it is possible to obtain multiplier rules for

approximate solutions using the e-subdifferential (Strodiot et al., 1983; Yo-
koyama, 1992). In nonconvex scalar optimization, the general method to
obtain multiplier rules for approximate solutions is based on variational
principles (Loridan, 1982).
Multiobjective optimization problems add an additional detail since in

this kind of programs the notion of approximate efficient solution is not
unique. The concept more used in the bibliography is due to Kutateladze
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(1979) and Loridan (1984). Using this concept Liu (1991, 1996), Yokoyama
(1996), Liu and Yokoyama (1999) and the authors (Guti�errez et al., sub-
mitted) have obtained Kuhn–Tucker type conditions for approximate Pa-
reto solutions. During these last years, several authors have already
initiated the study of approximate solutions in optimization problems
involving set-valued maps (see, for example, Rong and Wu, 2000).
In this work we provide multiplier rules for approximate solutions in

convex multiobjective optimization problems using the e-subdifferential
and a notion of approximate efficiency due to Helbig (1992). With these
rules we complete the Kuhn–Tucker type conditions above-mentioned.
As an application of these multiplier rules we develop saddle-point theo-

rems corresponding to approximate solutions in the sense of Helbig using
two vector-valued Lagrangian functions.
Our saddle-point theorems include approximate saddle-point results for

scalar problems, extend by means of Helbig’s approximate solutions similar
results obtained for exact Pareto solutions in Tanino and Sawaragi (1979),
Corley (1981), and Luc (1984) and give an answer to a problem formulated
in Remark 3.3 of V�a lyi (1987).
Section 2 contains definitions and some results subsequently used. More-

over some connections between the concepts of Kutateladze–Loridan and
Helbig are analyzed. Section 3 describes a general method to transform a
multiobjective optimization problem in a scalar optimization problem in
such a way that approximate Pareto solutions for the first problem are
approximate solutions for the second problem. We next look into convex
multiobjective optimization problems and we deduce multiplier rules for
approximate Pareto solutions in the sense of Helbig. In Section 4 we
deduce saddle-point theorems for approximate Pareto solutions in the sense
of Helbig using the multiplier rules obtained in Section 3. Finally, Section
5 presents some conclusions that summarize this work.

2. Notation and Preliminaries

Let X be a normed space. In this paper we analyze the multiobjective opti-
mization problem

MinffðxÞjx 2 Kg; ð1Þ
where f:X! Rp, f ¼ ðf1; f2; . . . ; fpÞ and K � X, K 6¼ ;. We consider Pareto
solutions for (1).

DEFINITION 2.1. A point x0 2 K is said to be an efficient Pareto solu-
tion (or Pareto solution) for (1), denoted x0 2 Minðf;KÞ, if there is no
x 2 K such that fðxÞ � fðx0Þ 2 �Rp

þnf0g.
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We write X� for the topological dual of X. The interior of M � X will
be written by intðMÞ. Let IM denote the indicator function of M. For a lin-
ear map A:X! Rm we use ImðAÞ and At to denote the image and the
transpose map of A respectively. Finally, if g:X! R [ f1g is a convex
function then domðgÞ designates its domain.
Definition 2.2 establishes the notion of approximate solution for scalar

programming.

DEFINITION 2.2. In problem (1), assume that p ¼ 1. Let eP 0. A point
x0 2 K is said to be an e-solution (or approximate solution up to e) for (1),
if fðx0Þ � eO fðxÞ, 8x 2 K.

The following definitions describe two concepts that extend the notion of
approximate solution from scalar optimization problems to multiobjective
programs.

DEFINITION 2.3 (Kutateladze, 1979; Loridan, 1984). Let �e ¼ ðe1; e2; . . . ;
epÞ 2 R

p
þ. A point x0 2 K is said to be an �e-efficient Pareto solution (or �e-

Pareto solution) for (1), denoted x0 2 Min�eðf;KÞ, if there is no x 2 K such
that fðxÞ � fðx0Þ þ �e 2 �Rp

þnf0g.

DEFINITION 2.4 (Helbig, 1992). Let h 2 intðRp
þÞ and let eP 0. A point

x0 2 K is said to be an ðe; hÞ-efficient Pareto solution (or ðe; hÞ-Pareto solu-
tion) for (1), denoted x0 2 Mine;hðf;KÞ, if

x 2 K; fðxÞ � fðx0Þ 2 �Rp
þ ) hh; fðx0ÞiO hh; fðxÞi þ e:

Definition 2.4 was introduced by Helbig (1992) in the context of a linear
topological space Y ordered by a nontrivial cone. Notice that Definitions
2.3 and 2.4 become Definition 2.1 when �e ¼ 0 and e ¼ 0, respectively.
Moreover, when p ¼ 1 Definition 2.3 and Definition 2.4 with h ¼ 1 become
Definition 2.2.
If problem (1) is Max then we define the sets of solutions Maxðf;KÞ,

Max�eðf;KÞ and Maxe;hðf;KÞ in a similar way as Definitions 2.1, 2.3 and 2.4,
respectively.
In convex scalar optimization there exists a concept very useful to obtain

information about approximate solutions: the e-subdifferential.

DEFINITION 2.5 (Hiriart-Urruty, 1982). Let g:X! R [ f1g be a convex
proper function. Let x0 2 domðgÞ and eP 0. The e-subdifferential of g at x0
is the set oegðx0Þ defined by
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oegðx0Þ ¼ fx� 2 X�jhx�;x� x0iO gðxÞ � gðx0Þ þ e;8x 2 Xg:

We use this concept in Section 3 to deduce multiplier rules for ðe; hÞ-Pa-
reto solutions in convex multiobjective optimization problems.
The e-subdifferential satisfies several calculus rules. Next we describe the

formula for a sum of convex functions (see Theorem 2.1 in Hiriart-Urruty,
1982 for more details).

THEOREM 2.6. Let g1; g2 :X! R [ f1g be two proper convex functions
such that there exists x 2 domðg1Þ at which g2 is finite and continuous. Then
8e P 0 and 8x0 2 domðg1Þ \ domðg2Þ,

oeðg1 þ g2Þðx0Þ ¼
[

e1 P 0;e2 P 0
e1þe2¼e

foe1g1ðx0Þ þ oe2g2ðx0Þg:

The following proposition describes the e-subdifferential of an indicator
function and motivates the notion of e-normal set. For more details, we
refer the reader to Hiriart-Urruty, 1982.

PROPOSITION 2.7. Let M be a nonempty closed convex subset of X and let
x0 2M. Then oeIMðx0Þ ¼ fx� 2 X�:hx�;x� x0iO e; 8x 2Mg.

DEFINITION 2.8. Let M be a nonempty closed convex subset of X and let
x0 2M. The set NeðM;x0Þ of e-normals to M at x0 is defined by
NeðM;x0Þ ¼ oeIMðx0Þ.

We finish this section giving some relationships between Definitions 2.3
and 2.4.

PROPOSITION 2.9. Let e P 0, �e 2 R
p
þnf0g and h 2 intðRp

þÞ such that
hh;�eiP 1. Approximate solutions for (1) satisfy the following relations:

(i) Minðf;KÞ � Mine;hðf;KÞ � Mine��eðf;KÞ.
(ii) If e ¼ 0 then Minðf;KÞ ¼ Mine;hðf;KÞ ¼ Mine��eðf;KÞ.

Proof. (i) If x0 2 Minðf;KÞ then fðKÞ \ ðfðx0Þ � R
p
þÞ ¼ ffðx0Þg. Thus, for all

x 2 K such that fðxÞ � fðx0Þ 2 �Rp
þ, fðxÞ ¼ fðx0Þ and, consequently,

hh; fðxÞi þ e ¼ hh; fðx0Þi þ e P hh; fðx0Þi:

Therefore Minðf;KÞ � Mine;hðf;KÞ.
Now, let x0 2 Mine;hðf;KÞ and suppose that x0 62 Mine��eðf;KÞ. Then there

exists x 2 K such that
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fðxÞ � ðfðx0Þ � e � �eÞ 2 �Rp
þnf0g: ð2Þ

By (2), fðxÞ � fðx0Þ 2 �Rp
þ and

hh; fðx0ÞiO hh; fðxÞi þ e ð3Þ

since x0 2 Mine;hðf;KÞ. From (2) we have fðxÞ þ e � �e� fðx0Þ 2 �Rp
þnf0g. As

h 2 intðRp
þÞ we obtain hh; fðxÞ þ e � �e� fðx0Þi < 0. Since hh;�eiP 1 it follows

that hh; fðxÞi þ e < hh; fðx0Þi, contrary to (3).
(ii) A simple verification shows that Mine��eðf;KÞ � Minðf;KÞ if e ¼ 0.

Then part (i) proves the inclusions in (ii). (

The following simple example shows that the last inclusion in Proposi-
tion 2.9(i) is not an equality in general.

EXAMPLE 2.10. Consider problem (1). Suppose that X ¼ R2, K ¼ fðx; yÞ 2
R2jx2 þ y2 O 1g, p ¼ 2 and fðx; yÞ ¼ ðx; yÞ. Let e ¼ 1, �e ¼ ð1; 0Þ, h ¼ ð1; 1Þ
and x0 ¼ ð0; 0Þ. It is clear that x0 2 Mine��eðf;KÞ since fðx0Þ � e � �e ¼
ð�1; 0Þ 2 Minðf;KÞ. However x0 is not an ðe; hÞ-Pareto solution since
x ¼ ð�1=

ffiffiffi
2
p

;�1=
ffiffiffi
2
p
Þ 2 K, fðxÞ � fðx0Þ 2 �R2

þ and

hh; fðxÞi þ e ¼ �
ffiffiffi
2
p
þ 1 < 0 ¼ hh; fðx0Þi:

3. Multiplier Rules for Approximate Pareto Solutions in Convex

Multiobjective Programs

In this section we assume that the feasible set in problem (1) is K ¼ S \ C,
with

S ¼ fx 2 XjgjðxÞO 0; j ¼ 1; 2; . . . ;mg;

gj:X! R, j ¼ 1; 2; . . . ;m and C � X, C 6¼ ;.
Let e P 0, h 2 intðRp

þÞ and x0 2 X be fixed. We can analyze if
x0 2 Mine;hðf;KÞ by means of the scalar optimization problem

MinfFðxÞjx 2 Cg; ð4Þ

where FðxÞ ¼ max
1O iO p
1O jOm

ffiðxÞ � fiðx0Þ; gjðxÞ; hh; fðxÞi þ e� hh; fðx0Þig:

LEMMA 3.1. Problems (1) and (4) satisfy the following relations.

(i) If x0 2 Mine;hðf;S \ CÞ then x0 2 MineðF;CÞ.
(ii) If 0O d < e and x0 2 MindðF;CÞ \ S then x0 2 Mine;hðf;S \ CÞ.

Proof. (i) Suppose that x0 2 Mine;hðf;S \ CÞ. As x0 2 S and e P 0 we have
Fðx0Þ ¼ e. Moreover,

MULTIPLIER RULES AND SADDLE-POINT THEOREMS 371



FðxÞP 0; 8x 2 C:

Indeed, if there exists z 2 C such that FðzÞ < 0 then z 2 S, because
gjðzÞOFðzÞ < 0; 8j ¼ 1; 2; . . . ;m;

and fðzÞ is better than fðx0Þ in the sense of Pareto since

fiðzÞ � fiðx0ÞOFðzÞ < 0; 8i ¼ 1; 2; . . . ; p:

Consequently, hh; fðx0ÞiO hh; fðzÞi þ e since x0 2 Mine;hðf;S \ CÞ. This con-
tradicts the fact that hh; fðzÞi þ e� hh; fðx0ÞiOFðzÞ < 0.
In summary, x0 2 C, Fðx0Þ ¼ e and FðxÞP 0; 8x 2 C; therefore x0 2

MineðF;CÞ.
(ii) Let d 2 ½0; eÞ and suppose that x0 2 MindðF;CÞ \ S. Then FðxÞP

Fðx0Þ � d, 8x 2 C. If we evaluate Fðx0Þ � d and we use that d < e, then we
obtain

Fðx0Þ � d ¼ e� d > 0

and it follows that 8x 2 C,

max
1O iOp
1O jOm

ffiðxÞ� fiðx0Þ;gjðxÞ;hh;fðxÞiþ e�hh;fðx0Þig¼FðxÞPFðx0Þ�d> 0:

ð5Þ
If x 2 S then gjðxÞO 0, j ¼ 1; 2 . . . ;m. Therefore, if we apply inequality (5)
to any x 2 S \ C we conclude that there exists i 2 f1; 2; . . . ; pg such that
fiðxÞ > fiðx0Þ and fðxÞ � fðx0Þ 62 �Rp

þ, or fðxÞ � fðx0Þ 2 �Rp
þ and

hh; fðxÞi þ e > hh; fðx0Þi. Consequently, x0 2 Mine;hðf;S \ CÞ. (

Lemma 3.1 allows to obtain Fritz John type conditions for ðe; hÞ-Pareto
solutions in general convex multiobjective optimization problems.
In the remainder of this paper we consider the multiobjective optimiza-

tion problem

MinffðxÞjx 2 S \Q \Mg; ð6Þ
where Q ¼ fx 2 XjAx� b ¼ 0g, A : X! Rr is a continuous linear map,
b 2 Rr and M � X is a nonempty closed convex set. Moreover we require
fi, i ¼ 1; 2; . . . ; p, and gj, j ¼ 1; 2; . . . ;m, to be convex functions and we sup-
pose that S \Q \M 6¼ ;.

THEOREM 3.2. Consider the optimization problem (6). Assume that
Q \ intðMÞ 6¼ ; and x0 2 S \Q \M.

(i) If x0 2 Mine;hðf;S \Q \MÞ with h ¼ ðh1; h2; . . . ; hpÞ 2 intðRp
þÞ, then

there exist ðg; m; aÞ 2 Rp � Rm � R and multipliers ðk;l; cÞ 2 Rp�
Rm � R such that
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ðg; m; a; k;l; cÞP 0; ð7Þ

Xp

i¼1
ki þ

Xm

j¼1
lj þ c ¼ 1; ð8Þ

0 2
Xp

i¼1
ogi ½ðki þ chiÞfi�ðx0Þ þ

Xm

j¼1
omjðljgjÞðx0Þ þ ImðAtÞ þNaðM; x0Þ; ð9Þ

Xp

i¼1
gi þ

Xm

j¼1
mj � ceþ aO

Xm

j¼1
ljgjðx0Þ: ð10Þ

(ii) Let e > 0 and h 2 intðRp
þÞ. If there exist ðg; m; a; k; l; cÞ 2 Rp � Rm�

R� Rp � Rm � R satisfying conditions (7)–(10) with strict inequality
in (10), then x0 2 Mine;hðf;S \Q \MÞ.

Previously we are going to prove a lemma.

LEMMA 3.3. Consider the optimization problems (4) and (6) under the
hypotheses of Theorem 3.2 and let d P 0. Then x0 2 MindðF;Q \MÞ if and
only if there exist ðg; m; aÞ 2 Rp � Rm � R and multipliers ðk; l; cÞ 2 Rp�
Rm � R such that (7)–(9) and

Xp

i¼1
gi þ

Xm

j¼1
mj þ ðe� dÞ � ceþ a O

Xm

j¼1
ljgjðx0Þ ð11Þ

are satisfied.

Proof. It is clear from Definition 2.5 that x0 2 MindðF;Q \MÞ if and only
if 0 2 odðFþ IQ þ IMÞðx0Þ. As Q \ intðMÞ 6¼ ; we can apply Theorem 2.6
and we deduce that 0 2 odðFþ IQ þ IMÞðx0Þ if and only if there exist
ai P 0, i ¼ 1; 2; 3, such that a1 þ a2 þ a3 ¼ d and

0 2 oa1Fðx0Þ þ oa2IQðx0Þ þ oa3IMðx0Þ: ð12Þ

In view of Definition 2.8, (12) becomes 0 2 oa1Fðx0Þ þNa2ðQ; x0Þþ
Na3ðM; x0Þ. Therefore, 0 2 odðFþ IQ þ IMÞðx0Þ if and only if there exist
ai 2 R, i ¼ 1; 2; 3, such that

ða1; a2; a3ÞP 0; ð13aÞ

a1 þ a2 þ a3 ¼ d ð13bÞ

and
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0 2 oa1Fðx0Þ þNa2ðQ;x0Þ þNa3ðM; x0Þ: ð13cÞ

According to Theorem 4.1 in Hiriart-Urruty (1982) we deduce that
x� 2 oa1Fðx0Þ if and only if there exist pþmþ 1 nonnegative constants
b1;b2; . . . ; bp, m1; m2; . . . ; mm, n and pþmþ 1 nonnegative multipliers
k1; k2; . . . ; kp, l1; l2; . . . ; lm, c with

Pp
i¼1 ki þ

Pm
j¼1 lj þ c ¼ 1, such that

x� 2
Xp

i¼1
obi
ðkifiÞðx0Þ þ

Xm

j¼1
omjðljgjÞðx0Þ þ on c

Xp

i¼1
hifi

 !
ðx0Þ ð14Þ

and

Xp

i¼1
bi þ

Xm

j¼1
mj þ nþ e�

Xm

j¼1
ljgjðx0Þ � ce ¼ a1: ð15Þ

Theorem 2.6 implies

on c
Xp

i¼1
hifi

 !
ðx0Þ ¼

[

ni P 0;

n1þn2þ...þnp¼n

Xp

i¼1
oniðchifiÞðx0Þ: ð16Þ

Combining (14) and (15) with (16) we see that x� 2 oa1Fðx0Þ if and only if
there exist 2pþm nonnegative constants b1;b2; . . . ; bp, n1; n2; . . . ; np,
m1; m2; . . . ; mm and pþmþ 1 nonnegative multipliers k1; k2; . . . ; kp,
l1;l2; . . . ; lm, c with

Pp
i¼1 ki þ

Pm
j¼1 lj þ c ¼ 1, such that

x� 2
Xp

i¼1
obi
ðkifiÞðx0Þ þ

Xm

j¼1
omjðljgjÞðx0Þ þ

Xp

i¼1
oniðchifiÞðx0Þ ð17Þ

and

Xp

i¼1
bi þ

Xm

j¼1
mj þ

Xp

i¼1
ni þ e�

Xm

j¼1
ljgjðx0Þ � ce ¼ a1: ð18Þ

If we write gi ¼ bi þ ni, i ¼ 1; 2; . . . ; p, then we conclude by Theorem 2.6
that (17) and (18) are equivalent, respectively, to

x� 2
Xp

i¼1
ogi ½ðki þ chiÞfi�ðx0Þ þ

Xm

j¼1
omjðljgjÞðx0Þ ð19Þ

and

Xp

i¼1
gi þ

Xm

j¼1
mj þ e�

Xm

j¼1
ljgjðx0Þ � ce ¼ a1: ð20Þ
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Finally (13), (19) and (20) imply that 0 2 odðFþ IQ þ IMÞðx0Þ if and only if
there exist ai P 0, i ¼ 1; 2; 3, with

a1 þ a2 þ a3 ¼ d; ð21Þ

pþm nonnegative constants g1; g2; . . . ; gp, m1; m2; . . . ; mm and pþmþ 1 non-
negative multipliers, k1, k2; . . . ; kp, l1;l2; . . . ; lm, c with

Pp
i¼1 ki þ

Pm
j¼1 ljþ

c ¼ 1, such that

0 2
Xp

i¼1
ogi ½ðki þ chiÞfi�ðx0Þ þ

Xm

j¼1
omjðljgjÞðx0Þ þ Na2ðQ;x0Þ þ Na3ðM;x0Þ

and

Xp

i¼1
gi þ

Xm

j¼1
mj þ e�

Xm

j¼1
ljgjðx0Þ � ce ¼ a1: ð22Þ

Substituting (22) into (21) and using that a2 P 0 we obtain (11) with a ¼ a3.
Now, it is well-known that Na2ðQ; x0Þ ¼ N0ðQ;x0Þ ¼ ðKerAÞ? ¼ ImðAtÞ (see
Sections 5.7 and 6.6 in Luenberger, 1969 for more details) and the necessary
condition is complete.
Conversely, assume that (7)–(9) and (11) are satisfied. We define a1 by

equality (22), a2 ¼ d� ða1 þ aÞ and a3 ¼ a. The constants a1 and a2 are
nonnegative. Indeed, e� ceP 0 since c O 1 by (8). From x0 2 S it follows
that �

Pm
j¼1 ljgjðx0ÞP 0, so a1 P 0. Finally, (11) shows that a1 þ a O d,

and the sufficient condition is proved. (

Proof of Theorem 3.2. (i) By statement (i) of Lemma 3.1, if x0 2 Mine;hðf;S\
Q \MÞ then x0 2 MineðF;Q \MÞ. The result of part (i) follows from
Lemma 3.3 with d ¼ e. Notice that (11) becomes (10) when d ¼ e.
(ii) Reasoning as the last part of the proof of Lemma 3.3, we have that

a1 P 0, where a1 is defined by (22). So, a1 þ a P 0. Using that (10) is satis-
fied with strict inequality, it follows that a1 þ a < e. Choosing d such that
a1 þ a O d < e, then (11) is satisfied. The conclusion follows from Lemma
3.3 and statement (ii) of Lemma 3.1. (

REMARK 3.4. (i) (10) is a complementary slackness condition. Notice that
if e ¼ 0 then ljgjðx0Þ ¼ 0; j ¼ 1; 2; . . . ;m.
(ii) By Proposition 2.9, the multiplier rules in Theorem 3.2(i) are Fritz

John type necessary conditions for Pareto solutions in problem (6). In the
same way, the multiplier rules in Theorem 3.2(ii) are Fritz John type suffi-
cient conditions for e � �e-Pareto solutions in problem (6) if �e 2 R

p
þnf0g and

hh;�eiP 1.
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If problem (6) satisfies the so-called Slater constraint qualification:
ðSCQÞ 9z 2M such that gðzÞ < 0 and Az ¼ b;

then multipliers ki; i ¼ 1; 2; . . . ; p and c cannot all be zero and we obtain
Kuhn–Tucker type conditions. The proof for Proposition 3.5 is similar to
that of Proposition 4.1 in Guti�errez et al. (submitted) and is omitted. This
proposition and Theorem 3.2 extend Theorem 2.4 in Strodiot et al. (1983)
taking e � h as error.

PROPOSITION 3.5. Consider problem (6). Let x0 2 S \Q \M. Under the
constraint qualification (SCQ), if x0 satisfies conditions (7)–(10) then
ðk; cÞ 6¼ 0.

Finally we use the multiplier rules attained in Theorem 3.2(ii) to obtain
ðe; hÞ-Pareto solutions in one particular case.

EXAMPLE 3.6. With the notation of problem (6) suppose that X ¼ R2,
p ¼ 2, fðx; yÞ ¼ ðx; yÞ, m ¼ 2, g1ðx; yÞ ¼ �3x� y, g2ðx; yÞ ¼ �x� 3y and
Q ¼M ¼ R2. Let e ¼ 1 and h ¼ ð1; 1Þ. It is clear that 8ðx; yÞ 2 R2,
8k1; k2; c;l1; l2 2 R and 8g1; g2; m1; m2 P 0,

og1 ½ðk1 þ cÞf1�ðx; yÞ ¼ fðk1 þ c; 0Þg; og2 ½ðk2 þ cÞf2�ðx; yÞ ¼ fð0; k2 þ cÞg;
om1ðl1g1Þðx; yÞ ¼ fl1ð�3;�1Þg; om2ðl2g2Þðx; yÞ ¼ fl2ð�1;�3Þg:

Then Theorem 3.2(ii) implies that the following conditions give (1,(1,1))-
Pareto solutions:

ðg1; g2; m1; m2; k1; k2;l1; l2; cÞP 0; ð23Þ

k1 þ k2 þ l1 þ l2 þ c ¼ 1; ð24Þ

ðk1 þ c; k2 þ cÞ ¼ l1ð3; 1Þ þ l2ð1; 3Þ; ð25Þ

g1 þ g2 þ m1 þ m2 � c < l1ð�3x� yÞ þ l2ð�x� 3yÞ; ð26Þ

�3x� yO 0; �x� 3yO 0: ð27Þ

If we replace (26) by

g1 þ g2 þ m1 þ m2 � c Ol1ð�3x� yÞ þ l2ð�x� 3yÞ; ð28Þ

then Theorem 3.2(i) shows that the above conditions are necessary for
(1,(1,1))-Pareto solutions. We can certainly assume that g1 ¼ g2 ¼
m1 ¼ m2 ¼ 0 because if g1; g2; m1; m2 P 0 we have multipliers k1; k2; l1;l2; c
and a point ðx; yÞ such that ðg1; g2; m1; m2; k1; k2; l1; l2; c;x; yÞ satisfy (23)–
(27) then ð0; 0; 0; 0; k1; k2; l1;l2; c;x; yÞ solve (23)–(27) too.
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Equations (24) and (25) imply k1 ¼ 1� 2l1 � 4l2, k2 ¼ 1� 4l1 � 2l2

and c ¼ 5l1 þ 5l2 � 1. As k1; k2 and c are nonnegative we have the follow-
ing constraints for the multipliers l1 and l2:

l1 P 0; l2 P 0; 2l1 þ 4l2 O 1; 4l1 þ 2l2 O 1; 5l1 þ 5l2 P 1:

ð29Þ

Choosing l ¼ ð1=4; 0Þ, l ¼ ð0; 1=4Þ and l ¼ ð1=6; 1=6Þ respectively (three
extremal points of the set defined by (29)) we obtain from (26) and (27) that

S \ fðx; yÞ 2 R2j3xþ y < 1 or xþ 3y < 1 or xþ y < 1g

is a set of (1,(1,1))-Pareto solutions. Taking into account condition (28) we
deduce that points in

S \ fðx; yÞ 2 R2j3xþ yO 1 or xþ 3yO 1 or xþ yO 1g

satisfy necessary conditions for (1,(1,1))-Pareto solutions. It is easy to
check that this is the set of (1,(1,1))-Pareto solutions.

4. Approximate Saddle-Point Theorems

As an application of Theorem 3.2 we deduce approximate saddle-point the-
orems for Helbig’s approximate solutions in convex Pareto problems.
Let kP 1 be an integer and let d 2 R

p
þ be a fixed vector. We denote by

Lk the linear space of linear functions from Rk into Rp and by Lk;d the lin-
ear space of functions f~s : Rk ! Rpj~sðzÞ ¼ hs; zidg (notice that s 2 Rk

defines ~s ). Let Lþk ¼ f~s 2 Lkj~sðRk
þÞ � R

p
þg and Lþk;d ¼ f~s 2 Lk;djs 2 Rk

þg.
Both Lþk and Lþk;d are convex cones. Moreover it is clear that Lk;d � Lk and
Lþk;d � Lþk .
According to these spaces we consider two vector-valued Lagrangian

functions for (6): Ud1;d2 : X� Lm;d1 � Lr;d2 ! Rp [ f�1g defined by the
equality

Ud1;d2ðx; ~s 1; ~s 2Þ ¼
1 if x 62 M
fðxÞ þ ~s 1ðgðxÞÞ þ ~s 2ðAðxÞ � bÞ if x 2M; ~s 1 2 Lþm;d1
�1 if x 2M; ~s 1 62 Lþm;d1

8
<

:

and W : X� Lm � Lr ! Rp [ f�1g defined similarly.

DEFINITION 4.1. Let �e 2 R
p
þ. A point ðx0; ~s 10 ; ~s 20 Þ 2 X� Lm;d1 � Lr;d2 is said

to be an �e-Pareto saddle-point for the Lagrangian function Ud1;d2 if:

(i) x0 2 Min�eðUd1;d2ð�; ~s 10 ; ~s 20 Þ;XÞ;
(ii) ð~s 10 ; ~s 20 Þ 2 Max�eðUd1;d2ðx0; �; �Þ;Lm;d1 � Lr;d2Þ:
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In Definition 4.1 we supplement the space Rp with the elements 1 and
�1 and we assume that the usual algebraic and ordering properties hold.
The definition of �e-Pareto saddle-point for the Lagrangian W is similar.
Proposition 4.2 characterizes �e-Pareto saddle-points for the Lagrangians

Ud1;d2 and W. The proof is analogous to the demonstration of Proposition
3.1 in V�alyi (1987) and it is omitted.

PROPOSITION 4.2.
(i) Let �e 2 R

p
þ and d1; d2 2 �eþ R

p
þnf0g. A point ðx0; ~s 10 ; ~s 20 Þ 2 X�Lm;d1�

Lr;d2 is an �e-Pareto saddle-point for the Lagrangian Ud1;d2 if and only
if:
(a) x0 2 Min�eðUd1;d2ð�; ~s 10 ; ~s 20 Þ;XÞ,
(b) x0 2 S \Q \M,
(c) ~s 10 ðgðx0ÞÞ þ �e 62 �Rp

þnf0g.
(ii) The same is true for the Lagrangian W in place of Ud1;d2 if
ðx0; ~s 10 ; ~s 20 Þ 2 X� Lm � Lr and we replace (a) by
(a0) x0 2 Min�eðWð�; ~s 10 ; ~s 20 Þ;XÞ.

Next we show that in convex Pareto problems satisfying (SCQ), if e > 0
and �e; h 2 intðRp

þÞ with hh;�eiP 1 then for every ðe; hÞ-Pareto solution x0
there is a Lagrangian function Ud1;d2 such that x0 is an e � �e-Pareto saddle-
point of this function. We previously state an approximate version of the
Lagrangian multiplier theorem under appropriate regularity conditions.
This result extends Theorem 4.1 in Tanino and Sawaragi (1979), Theorem
2 in Corley (1981) and Theorem 3.2 in Luc (1984).

THEOREM 4.3. Let e; c > 0 and �e, h, d2 2 intðRp
þÞ such that hh; �e iP 1. Sup-

pose that (SCQ) holds. If x0 2 Mine;hðf;S \Q \MÞ then there exist
~s 10 2 Lm;ce�e and ~s 20 2 Lr;d2 such that x0 2 Mine��eðUce�e;d2ð�; ~s 10 ; ~s 20 Þ;XÞ and
~s 10 ðgðx0ÞÞ þ e � �e 2 R

p
þ.

Proof. As x0 2 Mine;hðf;S \Q \MÞ it follows by Theorem 3.2 that there
exists ðg; m; a; k;l; cÞ 2 Rp � Rm � R� Rp � Rm � R such that (7)–(10) hold.
From (9) we deduce that there exist x�i 2 ogi ½ðki þ chiÞfi�ðx0Þ, i ¼

1; 2; . . . ; p, z�j 2 omjðljgjÞðx0Þ, j ¼ 1; 2; . . . ;m, a� 2 ImðAtÞ and w� 2
NaðM; x0Þ such that

Xp

i¼1
x�i þ

Xm

j¼1
z�j þ a� þ w� ¼ 0: ð30Þ

As a� 2 ImðAtÞ it follows that there exists v ¼ ðv1; v2; . . . ; vrÞ such that a� ¼
Atv. Let us show that x0 2 Minceðhkþ ch; fð�Þi þ hl; gð�Þiþ hv;Að�Þ � bi;MÞ.
Indeed, by the definition of e-subdifferential and e-normal we obtain
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ðkiþchiÞfiðxÞPðkiþ chiÞfiðx0Þ�giþhx�i ;x�x0i; i¼ 1;2; . . . ;p; 8x2X;
ð31Þ

ljgjðxÞP ljgjðx0Þ � mj þ hz�j ;x� x0i; j ¼ 1; 2; . . . ;m; 8x 2 X; ð32Þ

a P hw�; x� x0i; 8x 2M; ð33Þ

hv;AðxÞ � bi ¼ hv;Aðx0Þ � bi þ ha�;x� x0i; 8x 2 X: ð34Þ

Adding the inequalities in (31)–(34) and applying (30) we obtain 8x 2M,

hkþ ch; fðxÞi þ hl; gðxÞi þ hv;AðxÞ � biP hkþ ch; fðx0Þi þ hl; gðx0Þi

þ hv;Aðx0Þ � bi �
Xp

i¼1
gi �

Xm

j¼1
mj � a: ð35Þ

Applying (10) into (37) it follows that 8x 2M;

hkþ ch; fðxÞi þ hl; gðxÞi þ hv;AðxÞ � biP hkþ ch; fðx0Þiþ

hl; gðx0Þi þ hv;Aðx0Þ � bi �
Xm

j¼1
ljgjðx0Þ � ceP

hkþ ch; fðx0Þi þ hl; gðx0Þi þ hv;Aðx0Þ � bi � ce;

ð36Þ

where the last inequality holds since x0 2 S and lj P 0, 8j ¼ 1; 2; . . . ;m. By
(36) we see that

x0 2 Minceðhkþ ch; fð�Þi þ hl; gð�Þi þ hv;Að�Þ � bi;MÞ: ð37Þ

Let us consider ~s 10 ¼ hb1l; �ice�e 2 Lm;ce�e and ~s20 ¼ hb2v; �id2 2 Lr;d2 with

b1 ¼
1

hkþ ch; ce�ei ; b2 ¼
1

hkþ ch; d2i
: ð38Þ

According to Proposition 3.5 we have ðk; cÞ 6¼ 0. Then b1;b2 > 0 since
c; e > 0 and h,�e, d2 2 intðRp

þÞ. The proof is completed if we show that
x0 2 Mine��eðUce�e;d2ð�; ~s 10 ; ~s 20 Þ;XÞ and ~s 10 ðgðx0ÞÞ þ e � �e 2 R

p
þ.

Suppose, contrary to our claim, that x0 62 Mine��eðUce�e;d2ð�; ~s 10 ; ~s 20 Þ;XÞ. Then
we could find a point x 2 X such that

Uce�e;d2ðx; ~s 10 ; ~s 20 Þ � ðUce�e;d2ðx0; ~s 10 ; ~s 20 Þ � e � �eÞ 2 �Rp
þnf0g: ð39Þ

x0 2M and ~s 10 2 Lþm;ce�e since b1 > 0 and l 2 Rm
þ. Then x 2M and we can

rewrite (39) as

fðxÞ þ ~s 10 ðgðxÞÞ þ ~s 20 ðAðxÞ � bÞ � ðfðx0Þ þ ~s 10 ðgðx0ÞÞ þ ~s 20 ðAðx0Þ � bÞ
� e � �eÞ 2 �Rp

þnf0g:
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Since kþ ch 2 R
p
þ we have

hkþ ch; fðxÞ þ ~s 10 ðgðxÞÞ þ ~s 20 ðAðxÞ � bÞ � ðfðx0Þ þ ~s 10 ðgðx0ÞÞ
þ ~s 20 ðAðx0Þ � bÞ � e � �eÞiO 0:

ð40Þ

By (38) we have hkþ ch; ~s 10 ð�Þi ¼ hl; �i and hkþ ch; ~s 20 ð�Þi ¼ hv; �i. Using
that hh;�eiP 1 we conclude from (40) that

hkþ ch; fðxÞi þ hl; gðxÞi þ hv;AðxÞ � biO hkþ ch; fðx0Þi þ hl; gðx0Þi
þ hv;Aðx0Þ � bi � ce� hk; e � �ei:

ð41Þ
Inequalities (40) and (41) are strict if c 6¼ 0 because h 2 intðRp

þÞ. More-
over hk; e � �ei > 0 if k 6¼ 0 since e � �e 2 intðRp

þÞ. Then for x 2M we have

hkþ ch; fðxÞi þ hl; gðxÞi þ hv;AðxÞ � bi < hkþ ch; fðx0Þi þ hl; gðx0Þi
þ hv;Aðx0Þ � bi � ce

in contradiction to (36).
Finally, we show that ~s 10 ðgðx0ÞÞ þ e � �e 2 R

p
þ. Indeed, by (38) we have

~s 10 ðgðx0ÞÞ þ e � �e ¼ hb1l; gðx0Þice�eþ e � �e ¼ hl; gðx0Þi
hkþ ch; e � �ei þ 1

� �
e � �e

and ~s 10 ðgðx0ÞÞ þ e � �e 2 R
p
þ if and only if hl; gðx0Þi þ hkþ ch; e � �eiP 0. As

hh;�eiP 1 and hk; e � �eiP 0 we conclude from (10)

hl; gðx0Þi þ hkþ ch; e � �eiP
Xm

j¼1
ljgjðx0Þ þ ceP

Xp

i¼1
gi þ

Xm

j¼1
mj þ a P 0:

(
Next we show that the conditions described in Theorem 4.3 are not suffi-

cient for ðe; hÞ-Pareto efficiency.

EXAMPLE 4.4. In Example 2.10 the feasible point ð0; 0Þ is not an (1,(1,1))-
Pareto solution. However, let c ¼ 1, �e ¼ ð1; 1Þ and ~s10ðzÞ ¼ ðz; zÞ; 8z 2 R. It
is clear that ~s10 2 L1;ð1;1Þ and ~s10ðg1ð0; 0ÞÞ þ e � �e ¼ ð0; 0Þ 2 R2

þ. Moreover
ð0; 0Þ 2 Minð1;1Þðfð�Þ þ ~s10ðg1ð�ÞÞ;R2Þ. In fact, suppose that there exists
ðx; yÞ 2 R2 such that fðx; yÞ þ ~s10ðg1ðx; yÞÞ �ðfð0; 0Þ þ ~s10ðg1ð0; 0ÞÞ
�ð1; 1ÞÞ 2 �R2

þnf0g. Then ðxþ x2 þ y2 þ 1; yþ x2þ y2 þ 1Þ 2 �R2
þnf0g

and this is a contradiction since ðxþ x2 þ y2 þ 1; yþ x2þ y2 þ 1Þ ¼
ððxþ 1=2Þ2 þ y2 þ 3=4; x2þ ðyþ 1=2Þ2 þ 3=4Þ 2 R2

þ.

The following corollary is immediate from Proposition 4.2(i) and Theo-
rem 4.3.
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COROLLARY 4.5. Consider problem (6) and suppose that (SCQ) holds. Let
e > 0, c > 1, �e; h 2 intðRp

þÞ with hh;�eiP 1 and d2 2 e�eþ R
p
þnf0g. If

x0 2 Mine;hðf;S \Q \MÞ then there exist ~s10 2 Lm;ce�e and ~s20 2 Lr;d2 such that
ðx0; ~s10; ~s20Þ is an e � �e-Pareto saddle-point for the vector-valued Lagrangian
function Uce�e;d2 .

REMARK 4.6. We have chosen the Lagrangian Ud1;d2 instead of W to
obtain necessary conditions for ðe; hÞ-Pareto solutions through its �e-Pareto
saddle-points because the space Lk;d has less variables than the space Lk.
This feature is important from the point of view of solving practical prob-
lems.

Nevertheless the corresponding result for the Lagrangian W also holds
and it is stated in the next corollary. Its proof is clear from Theorem 4.3
and Proposition 4.2(ii) since Lk;d � Lk.

COROLLARY 4.7. Consider problem (6) and suppose that (SCQ) holds. Let
e > 0 and �e; h 2 intðRp

þÞ with hh;�eiP 1. If x0 2 Mine;hðf;S \Q \MÞ then
there exist ~s 10 2 Lm and ~s 20 2 Lr such that ðx0; ~s 10 ; ~s 2

0 Þ is an e � �e-Pareto sad-
dle-point for the vector-valued Lagrangian function W.

For the same reason in Remark 4.6 we should choose W instead of Ud1;d2

to obtain sufficient conditions for approximate Pareto solutions through its
�e-Pareto saddle-points.

PROPOSITION 4.8. Let h 2 intðRp
þÞ, �e 2 R

p
þ and ðx0; ~s 10 ; ~s 20 Þ 2 X� Lþm � Lr.

Assume that x0 is an approximate solution up to hh;�ei for the scalar optimi-
zation problem

Minfhh;Wðx; ~s 10 ; ~s 20 Þijx 2 Kg;

where the feasible set is K ¼ S \Q \M \ fx 2 XjfðxÞ � fðx0Þ 2 �Rp
þg. Then

x0 2 Minhh;�e�~s 1
0
ðgðx0ÞÞi;hðf;S \Q \MÞ.

Proof. Suppose that the conclusion is false. Then there exists a point
x 2 S \Q \M such that fðxÞ � fðx0Þ 2 �Rp

þ and hh; fðx0Þi > hh; fðxÞiþ
hh;�e� ~s 10 ðgðx0ÞÞi. Hence x 2 K, and we have ~s10ðgðxÞÞ 2 �R

p
þ and AðxÞ�

b ¼ 0 since ~s 10 2 Lþm and x 2 S \Q. Moreover, Aðx0Þ � b ¼ 0 because x0 2
Q. Then

hh; fðx0Þþ~s20ðAðx0Þ�bÞi>hh; fðxÞiþhh;�e�~s10 ðgðx0ÞÞiPhh; fðxÞ
þ~s10ðgðxÞÞþ~s20ðAðxÞ�bÞiþhh;�e�~s10ðgðx0ÞÞi:

ð42Þ
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Since x; x0 2M and ~s10 2 Lþm, (42) shows that

hh;Wðx0; ~s 10 ; ~s 20 Þi � hh;�ei > hh;Wðx; ~s 10 ; ~s 20 Þi:

This is a contradiction because x0 2 Minhh;�eiðhh;Wð�; ~s 10 ; ~s 20 Þi;KÞ. (

The proof of Proposition 4.8 shows that the same result is true for the
Lagrangian function Ud1;d2 if ~s 10 2 Lþm;d1 .

5. Conclusions

In this work we have studied Helbig’s approximate solutions in convex Pa-
reto problems. Our first objective has been to obtain multiplier rules for
these solutions. In order to attain this objective we have related the multi-
objective problem with a scalar minimax program. This procedure has
proved to be very useful for our propose.
Next we have deduced the corresponding approximate saddle-point theo-

rems using two different vector-valued Lagrangian functions. Here our
development closely follows the line of classical Lagrangian saddle-point
results starting from the Kuhn–Tucker conditions previously obtained. Our
Corollary 4.7 gives an answer to a problem formulated by V�alyi (1987) in
Remark 3.3.
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